FP2 Roots of Polymonial Equations

2 The cubic equation

$$
x^{3}+p x^{2}+q x+r=0
$$

where p, q and r are real, has roots α, β and γ.
(a) Given that

$$
\alpha+\beta+\gamma=4 \quad \text { and } \quad \alpha^{2}+\beta^{2}+\gamma^{2}=20
$$

find the values of p and q.
(b) Given further that one root is $3+\mathrm{i}$, find the value of r.

5 The cubic equation

$$
z^{3}-4 \mathrm{i}^{2}+q z-(4-2 \mathrm{i})=0
$$

where q is a complex number, has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha+\beta+\gamma$;
(1 mark)
(ii) $\alpha \beta \gamma$.
(1 mark)
(b) Given that $\alpha=\beta+\gamma$, show that:
(i) $\alpha=2 \mathrm{i} ; \quad$ (1 mark)
(ii) $\beta \gamma=-(1+2 \mathrm{i})$; \quad (2 marks)
(iii) $q=-(5+2 \mathrm{i})$. (3 marks)
(c) Show that β and γ are the roots of the equation

$$
\begin{equation*}
z^{2}-2 \mathrm{i} z-(1+2 \mathrm{i})=0 \tag{2marks}
\end{equation*}
$$

(d) Given that β is real, find β and γ.

3 The cubic equation

$$
z^{3}+2(1-\mathrm{i}) z^{2}+32(1+\mathrm{i})=0
$$

has roots α, β and γ.
(a) It is given that α is of the form k i, where k is real. By substituting $z=k \mathrm{i}$ into the equation, show that $k=4$.
(b) Given that $\beta=-4$, find the value of γ.

2 The cubic equation

$$
z^{3}+p z^{2}+6 z+q=0
$$

has roots α, β and γ.
(a) Write down the value of $\alpha \beta+\beta \gamma+\gamma \alpha$.
(1 mark)
(b) Given that p and q are real and that $\alpha^{2}+\beta^{2}+\gamma^{2}=-12$:
(i) explain why the cubic equation has two non-real roots and one real root; (2 marks)
(ii) find the value of p. (4 marks)
(c) One root of the cubic equation is $-1+3 \mathrm{i}$.

Find:
(i) the other two roots;
(ii) the value of q.

4 The cubic equation

$$
z^{3}+i z^{2}+3 z-(1+i)=0
$$

has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$; (1 mark)
(iii) $\alpha \beta \gamma$. (1 mark)
(b) Find the value of:
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$;
(3 marks)
(ii) $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$;
(4 marks)
(iii) $\alpha^{2} \beta^{2} \gamma^{2}$. (2 marks)
(c) Hence write down a cubic equation whose roots are α^{2}, β^{2} and γ^{2}.

3 The cubic equation

$$
z^{3}+q z+(18-12 \mathrm{i})=0
$$

where q is a complex number, has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha \beta \gamma$;
(I mark)
(ii) $\alpha+\beta+\gamma$.
(1 mark)
(b) Given that $\beta+\gamma=2$, find the value of:
(i) α;
(I mark)
(ii) $\beta \gamma$;
(2 marks)
(iii) q.
(3 marks)
(c) Given that β is of the form $k \mathrm{i}$, where k is real, find β and γ.
(4 marks)

4 It is given that α, β and γ satisfy the equations

$$
\begin{aligned}
& \alpha+\beta+\gamma=1 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=-5 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-23
\end{aligned}
$$

(a) Show that $\alpha \beta+\beta \gamma+\gamma \alpha=3$.
(b) Use the identity

$$
(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)=\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma
$$

to find the value of $\alpha \beta \gamma$.
(2 marks)
(c) Write down a cubic equation, with integer coefficients, whose roots are α, β and γ.
(d) Explain why this cubic equation has two non-real roots.
(2 marks)
(e) Given that α is real, find the values of α, β and γ.

3 The cubic equation

$$
z^{3}+p z^{2}+25 z+q=0
$$

where p and q are real, has a root $\alpha=2-3 i$.
(a) Write down another non-real root, β, of this equation.
(b) Find:
(i) the value of $\alpha \beta$;
(ii) the third root, γ, of the equation; (3 marks)
(iii) the values of p and q.

3 The cubic equation

$$
2 z^{3}+p z^{2}+q z+16=0
$$

where p and q are real, has roots α, β and γ.
It is given that $\alpha=2+2 \sqrt{3} \mathrm{i}$.
(a) (i) Write down another root, β, of the equation.
(ii) Find the third root, γ.
(iii) Find the values of p and q.
(b) (i) Express α in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.
(ii) Show that

$$
(2+2 \sqrt{3} i)^{n}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)
$$

(iii) Show that

$$
\alpha^{n}+\beta^{n}+\gamma^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}
$$

where n is an integer.

4
The roots of the cubic equation

$$
z^{3}-2 z^{2}+p z+10=0
$$

are α, β and γ.
It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-4$.
(a) Write down the value of $\alpha+\beta+\gamma$.
(1 mark)
(b) (i) Explain why $\alpha^{3}-2 \alpha^{2}+p \alpha+10=0$. (1 mark)
(ii) Hence show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=p+13
$$

(4 marks)
(iii) Deduce that $p=-3$.
(c) (i) Find the real root α of the cubic equation $z^{3}-2 z^{2}-3 z+10=0$.
(ii) Find the values of β and γ.

3 (a) Show that $(1+i)^{3}=2 i-2$.
(b) The cubic equation

$$
z^{3}-(5+\mathrm{i}) z^{2}+(9+4 \mathrm{i}) z+k(1+\mathrm{i})=0
$$

where k is a real constant, has roots α, β and γ.
It is given that $\alpha=1+\mathrm{i}$.
(i) Find the value of k.
(ii) Show that $\beta+\gamma=4$.

> (1 mark)
(iii) Find the values of β and γ.

4 The cubic equation

$$
z^{3}-2 z^{2}+k=0 \quad(k \neq 0)
$$

has roots α, β and γ.
(a) (i) Write down the values of $\alpha+\beta+\gamma$ and $\alpha \beta+\beta \gamma+\gamma \alpha$.
(2 marks)
(ii) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=4$.
(iii) Explain why $\alpha^{3}-2 \alpha^{2}+k=0$.
(1 mark)
(iv) Show that $\alpha^{3}+\beta^{3}+\gamma^{3}=8-3 k$.
(2 marks)
(b) Given that $\alpha^{4}+\beta^{4}+\gamma^{4}=0$:
(i) show that $k=2$;
(ii) find the value of $\alpha^{5}+\beta^{5}+\gamma^{5}$.

The numbers α, β and γ satisfy the equations

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =-10-12 \mathrm{i} \\
\alpha \beta+\beta \gamma+\gamma \alpha & =5+6 \mathrm{i}
\end{aligned}
$$

(a) Show that $\alpha+\beta+\gamma=0$.
(b) The numbers α, β and γ are also the roots of the equation

$$
z^{3}+p z^{2}+q z+r=0
$$

Write down the value of p and the value of q.
(c) It is also given that $\alpha=3 \mathrm{i}$.
(i) Find the value of r.
(ii) Show that β and γ are the roots of the equation

$$
\begin{equation*}
z^{2}+3 \mathrm{i} z-4+6 \mathrm{i}=0 \tag{2marks}
\end{equation*}
$$

(iii) Given that β is real, find the values of β and γ.

4 The cubic equation

$$
z^{3}+p z+q=0
$$

has roots α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$.
(ii) Express $\alpha \beta \gamma$ in terms of q.
(b) Show that

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma
$$

(c) Given that $\alpha=4+7 \mathrm{i}$ and that p and q are real, find the values of:
(i) β and γ;
(ii) p and q.
(d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.

4 The roots of the equation

$$
z^{3}-5 z^{2}+k z-4=0
$$

are α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$ and the value of $\alpha \beta \gamma$.
(ii) Hence find the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(b) The value of $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$ is -4 .
(i) Explain why α, β and γ cannot all be real.
(ii) By considering $(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}$, find the possible values of k.

The cubic equation

$$
z^{3}+p z^{2}+q z+37-36 \mathrm{i}=0
$$

where p and q are constants, has three complex roots, α, β and γ.
It is given that $\beta=-2+3 \mathrm{i}$ and $\gamma=1+2 \mathrm{i}$.
(a) (i) Write down the value of $\alpha \beta \gamma$.
(ii) Hence show that $(8+i) \alpha=37-36 i$.
(iii) Hence find α, giving your answer in the form $m+n \mathrm{i}$, where m and n are integers.
(b) Find the value of p.
(c) Find the value of the complex number q.

4 The roots of the equation

$$
z^{3}+2 z^{2}+3 z-4=0
$$

are α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$ and the value of $\alpha \beta+\beta \gamma+\gamma \alpha$.
[2 marks]
(ii) Hence show that $\alpha^{2}+\beta^{2}+\gamma^{2}=-2$.
[2 marks]
(b) Find the value of:
(i) $(\alpha+\beta)(\beta+\gamma)+(\beta+\gamma)(\gamma+\alpha)+(\gamma+\alpha)(\alpha+\beta)$;
[3 marks]
(ii) $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$.
[4 marks]
(c) Find a cubic equation whose roots are $\alpha+\beta, \beta+\gamma$ and $\gamma+\alpha$.

The cubic equation $27 z^{3}+k z^{2}+4=0$ has roots α, β and γ.
(a) Write down the values of $\alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$.
(b) (i) In the case where $\beta=\gamma$, find the roots of the equation.
(ii) Find the value of k in this case.
(c) (i) In the case where $\alpha=1-\mathrm{i}$, find α^{2} and α^{3}.
(ii) Hence find the value of k in this case.
(d) In the case where $k=-12$, find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}+1, \frac{1}{\beta}+1$ and $\frac{1}{\gamma}+1$.

2 The cubic equation $3 z^{3}+p z^{2}+17 z+q=0$, where p and q are real, has a root $\alpha=1+2 \mathrm{i}$.
(a) (i) Write down the value of another non-real root, β, of this equation.
(ii) Hence find the value of $\alpha \beta$.
(b) Find the value of the third root, γ, of this equation.
(c) Find the values of p and q.

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& p=-4 \\
\& (\alpha+\beta+\gamma)^{2}=\Sigma \alpha^{2}+2 \Sigma \alpha \beta \\
\& 16=20+2 \Sigma \alpha \beta \\
\& \Sigma \alpha \beta=-2 \\
\& q=-2
\end{aligned}
\] \\
\(3-i\) is a root \\
Third root is -2
\[
\begin{aligned}
\& \alpha \beta \gamma=(3+i)(3-i)(-2) \\
\& =-20 \\
\& r=+20
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1F } \\
\text { A1F } \\
\text { BI } \\
\text { B1F } \\
\text { MI } \\
\text { AlF } \\
\text { A1F }
\end{gathered}
\] \& 5

5 \& | Real $\alpha \beta \gamma$ |
| :--- |
| Real r |

\hline \& | Alternative to (b) |
| :--- |
| Substitute $3+\mathrm{i}$ into equation $\begin{aligned} & (3+i)^{2}=8+6 \mathrm{i} \\ & (3+i)^{3}=18+26 \mathrm{i} \\ & r=20 \end{aligned}$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { B1 } \\
\text { B1 } \\
\text { A2,1,0 }
\end{gathered}
$$
\] \& \& Provided r is real

\hline
\end{tabular}

5(a)(i)	$\alpha+\beta+\gamma=4 \mathrm{i}$	B1	1	
(ii)	$\alpha \beta \gamma=4-2 \mathrm{i}$	B1	1	
(b)(i)	$\alpha+\alpha=4 \mathrm{i}, \alpha=2 \mathrm{i}$	B1	1	AG
(ii)	$\beta \gamma=\frac{4-2 \mathrm{i}}{2 \mathrm{i}}=-2 \mathrm{i}-1$	M1		Some method must be shown, eg $\frac{2}{\mathrm{i}}-1$
		A1	2	AG
(iii)	$q=\alpha \beta+\beta \gamma+\gamma \alpha$	M1		
	$=\alpha(\beta+\gamma)+\beta \gamma$	M1		Or $\alpha^{2}+\beta \gamma$, ie suitable grouping
	$=2 \mathrm{i} .2 \mathrm{i}-2 \mathrm{i}-1=-2 \mathrm{i}-5$	Al	3	AG
(c)	Use of $\beta+\gamma=2 \mathrm{i}$ and $\beta \gamma=-2 \mathrm{i}-1$	MI		Elimination of say γ to arrive at
	$z^{2}-2 \mathrm{i} z-(1+2 \mathrm{i})=0$	A1	2	$\beta^{2}-2 \mathrm{i} \beta-(1+2 \mathrm{i})=0$ M1A0 unless also some reference to γ being a root AG
(d)	$\mathrm{f}(-1)=1+2 \mathrm{i}-1-2 \mathrm{i}=0$	M1		For any correct method
	$\beta=-1, \quad \gamma=1+2 \mathrm{i}$	A1A1	3	Al for each answer

V	solution	niarks	10 tal	comments
3(a)	$-k^{3} \mathrm{i}+2(1-\mathrm{i})\left(-k^{2}\right)+32(1+\mathrm{i})=0$	M1		Any form
	Equate real and imaginary parts: $-k^{3}+2 k^{2}+32=0$	Al		
	$-2 k^{2}+32=0$	AI		
	$k= \pm 4$	Al		
	$k=+4$	E1	5	AG
(b)	Sum of roots is $-2(1-i)$	M1		Or $\alpha \beta \gamma=-(32+32 \mathrm{i})$
				Must be correct for M1
	Third root 2-2i	Alv	2	

2(a)	$\sum \alpha \beta=6$	BI	1	
(b)(i)	Sum of squares <0 \therefore not all real	EI		
	Coefficients real \therefore conjugate pair	E1	2	
(ii)	$\left(\sum \alpha\right)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta$	M1A1		A1 for numerical values inserted
	$\left(\sum \alpha\right)^{2}=0$	AIF		
	$p=0$	AlF	4	cao
(c)(i)	$-1-3 \mathrm{i}$ is a root	B1		
	Use of appropriate relationship			
	eg $\sum \alpha=0$	M1		M0 if $\sum \alpha^{2}$ used unless the root 2 is checked
	Third root 2	AIF	3	incorrect $p \checkmark$
(ii)	$q=-(-1-3 \mathrm{i})(-1+3 \mathrm{i}) 2$	M1		allow even if sign error
	$=-20$	AIF	2	ft incorrect $3^{\text {rd }}$ root

			11	
$4(a)(i)$ (ii) (iii)	$\sum \alpha=-\mathrm{i}$	B1	1	
	$\sum \alpha \beta=3$	B1	1	
	$\alpha \beta \gamma=1+\mathrm{i}$	B1	1	
(b)(i)	$\sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta$ used	M1		Allow if sign error or 2 missing
	$=(-\mathrm{i})^{2}-2 \times 3$	AlF		
	$=-7$	AlF	3	ft errors in (a)
(ii)	$\sum \alpha^{2} \beta^{2}=\left(\sum \alpha \beta\right)^{2}-2 \sum \alpha \beta \cdot \beta \gamma$	M1		Allow if sign error in 2 missing
	$=\left(\sum \alpha \beta\right)^{2}-2 \alpha \beta \gamma \sum \alpha$	AI		
	$=9-2(1+\mathrm{i})(-\mathrm{i})$	A1F		ft errors in (a)
	$=7+2 \mathrm{i}$	AlF	4	ft errors in (a)
(iii)	$\alpha^{2} \beta^{2} \gamma^{2}=(1+\mathrm{i})^{2}=2 \mathrm{i}$	$\begin{gathered} \text { M1 } \\ \text { AIF } \end{gathered}$	2	ft sign error in $\alpha \beta \gamma$
(c)	$z^{3}+7 z^{2}+(7+2 \mathrm{i}) z-2 \mathrm{i}=0$	BIF		Correct numbers in correct places
		BIF	2	Correct signs

4(a)	$\begin{aligned} & \text { Use of }\left(\sum \alpha\right)^{2}=\sum \alpha^{2}+2 \sum \alpha \beta \\ & 1=-5+2 \sum \alpha \beta \\ & \sum \alpha \beta=3 \end{aligned}$	M1 AI A1	3	AG
(b)	$\begin{aligned} & 1(-5-3)=-23-3 \alpha \beta \gamma \\ & \alpha \beta \gamma=-5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For use of identity
(c)	$z^{3}-z^{2}+3 z+5=0$	$\begin{gathered} \text { M1 } \\ \text { AIF } \end{gathered}$	2	For correct signs and " $=0$ "
(d)	$\alpha^{2}+\beta^{2}+\gamma^{2}<0 \Rightarrow$ non real roots Coefficients real \therefore conjugate pair	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(e)	$\begin{aligned} & \mathrm{f}(-1)=0 \Rightarrow z+1 \text { is a factor } \\ & (z+1)\left(z^{2}-2 z+5\right)=0 \end{aligned}$	$\begin{gathered} \text { M1Al } \\ \text { Al } \end{gathered}$		
		Al	4	

k	.un	cratins	-	20.timatas
3(a)	$2+3 i$	B1	1	
(b)(i)	$\alpha \beta=13$	B1	1	
(ii)	$\alpha \beta+\beta \gamma+\gamma \alpha=25$	M1		M1A0 for -25 (no ft)
	$\gamma(\alpha+\beta)=12$	AIF		
	$\gamma=3$	AIF	3	ft error in $\alpha \beta$
(iii)	$p=-\sum \alpha=-7$	$\begin{gathered} \text { M1 } \\ \text { AlF } \end{gathered}$		M1 for a correct method for either p or q
	$q=-\alpha \beta \gamma=-39$	AIF	3	ft from previous errors p and q must be real for sign errors in p and q allow MI but A0
	Alternative for (b)(ii) and (iii):			
(ii)	Attempt at $(z-2+3 i)(z-2-3 i)$	(M1)		
	$z^{2}-4 z+13$	(AI)		
	cubic is $\left(z^{2}-4 z+13\right)(z-3) \therefore \gamma=3$	(A1)	(3)	
(iii)	Multiply out or pick out coefficients	(M1)		
	$p=-7, q=-39$	(Al, $\mathrm{Al})$	(3)	

			0	
4(a)(i)	$\sum \alpha=2$	B1		
	$\sum \alpha \beta=0$	B1	2	
(ii)	$\sum \alpha^{2}=\left(\sum \alpha\right)^{2}-2 \sum \alpha \beta$	M1		Used. Watch $\sum \alpha=-2$ (MIA0)
	$=4$	AI	2	AG
(iii)	Clear explanation	El	1	eg α satisfies the cubic equation since it is a root. Accept $z=\alpha$
(iv)	$\sum \alpha^{3}=2 \sum \alpha^{2}-3 k$	M1		Or $\sum \alpha^{3}=\left(\sum \alpha\right)^{3}-3 \sum \alpha \sum \alpha \beta+3 \alpha \beta \gamma$
	$=8-3 k$	Al	2	AG
(b)(i)	$\alpha^{4}=2 \alpha^{3}-k \alpha$	B1		
	$\sum \alpha^{4}=2 \sum \alpha^{3}-k \sum \alpha$	M1		Or $\sum \alpha^{4}=\left(\sum \alpha^{2}\right)^{2}-2\left(\sum \alpha \beta\right)^{2}+4 \alpha \beta \gamma \sum \alpha$
	$=2(8-3 k)-2 k$	Al		ft on $\sum \alpha=-2$
	$k=2$	Al	4	AG
(ii)	$\sum \alpha^{5}=2 \sum \alpha^{4}-k \sum \alpha^{2}$	M1		
	Substitution of values $=-8$	Al Al	3	

	10tal		δ	
7(a)	Use of $(\Sigma \alpha)^{2}=\Sigma \alpha^{2}+2 \Sigma \alpha \beta$	M1		
		AI	2	AG
(b)	$p=0, q=5+6 \mathrm{i}$	B1,B1	2	
(c)(i)	Substitute 3 i for 2 or use $3 \mathrm{i} \beta \gamma=-r$	M1		allow for $3 \mathrm{i} \beta \gamma=r$
	$-27 \mathrm{i}+15 \mathrm{i}-18+r=0$ or $\beta \gamma=5+6 \mathrm{i}+\alpha^{2}$	AI		any form
	$r=18+12 \mathrm{i}$	AIF	3	one error
(ii)	Cubic is $(z-3 i)\left(z^{2}+3 i z-4+6 i\right)$ or use of $\beta \gamma$ and $\beta+\gamma$	MIAI	2	clearly shown
(iii)	$\mathrm{f}(-2)=0$ or equate imaginary parts	M1		
	$\beta=-2, \gamma=2-3 \mathrm{i}$	Al,A1F	3	correct answers no working and no check B1 only

	1 viai		0	
4(a)(i)	$\alpha+\beta+\gamma=0$	BI	1	
(ii)	$\alpha \beta \gamma=-q$	B1	1	
(b)	$\alpha^{3}+p \alpha+q=0$	M1		
	$\sum \alpha^{3}+p \sum \alpha+3 q=0$	ml		
	$\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma$	Al	3	AG
	Alternative to (b) Use of			
	$\left(\sum \alpha\right)^{3}=\left(\sum \alpha^{3}\right)+6 \alpha \beta \gamma+3\left(\sum \alpha \sum \alpha \beta-3 \alpha \beta \gamma\right)$	(M1)		
	Substitution of $\sum \alpha=0$	(m1)		
	Result	(A1)		
(c)(i)	$\beta=4-7 \mathrm{i}, \gamma=-8$	B1,B1	2	
(ii)	Attempt at either p or q $\begin{aligned} & p=1 \\ & q=520 \end{aligned}$	MI A1F AIF	3	ft incorrect roots provided p and q are real
(d)	Replace z by $\frac{1}{z}$ in cubic equation	$\begin{gathered} \text { MI } \\ \text { A1F } \end{gathered}$		$\text { or } \sum \frac{1}{\alpha}=-\frac{p}{q}, \sum \frac{1}{\alpha \beta}=0, \frac{1}{\alpha \beta \gamma}=-\frac{1}{q}$ ft on incorrect p and/or q
	$520 z^{3}+z^{2}+1=0$ coefficients must be integers	A1	3	CAO
Q	Solution	Marks	Total	Comments
4(a)(i)	$\alpha+\beta+\gamma=5$	B1		
	$\alpha \beta \gamma=4$	BI	2	
(ii)	$\begin{aligned} \alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\alpha^{2} \beta \gamma= & \alpha \beta \gamma(\alpha+\beta+\gamma) \\ & =5 \times 4=20 \end{aligned}$	M1		
		A1V	2	FT their results from (a)(i)
(b)(i)	If α, β, γ are all real then $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2} \geqslant 0$ Hence α, β, γ cannot all be real	EI	I	argument must be sound
(ii)	$\alpha \beta+\beta \gamma+\gamma \alpha=k$	B1		$\sum \alpha \beta=k \quad \mathrm{PI}$
	$\begin{aligned} & (\alpha \beta+\beta \gamma+\gamma \alpha)^{2} \\ & =\sum \alpha^{2} \beta^{2}+2\left(\alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\alpha^{2} \beta \gamma\right) \end{aligned}$	MI		correct identity for $\left(\sum \alpha \beta\right)^{2}$
	$=-4+2(20)$ $k= \pm 6$	$\begin{gathered} \text { Al } \sqrt{\text { Al cso }} \end{gathered}$	4	substituting their result from (a)(ii) must see $k=$...

\cdots	volutivi	wriain	iviar	vuın!en
$4(\mathrm{a})$(i)(ii)	$\begin{aligned} & \alpha+\beta+\gamma=-2 \\ & \alpha \beta+\beta \gamma+\gamma \alpha=3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
	$\alpha^{2}+\beta^{2}+\gamma^{2}$			
	$=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$	M1		correct formula
	$=4-6=-2$	A1cso	2	AG be convinced; must see $4-6$ $\mathbf{A 0}$ if $\alpha+\beta+\gamma$ or $\alpha \beta+\beta \gamma+\gamma \alpha$ not correct
(b) (i)	$\sum(\alpha+\beta)(\beta+\gamma)=\sum \alpha^{2}+3 \sum \alpha \beta$	M1		or may use $12+4 \sum \alpha+\sum \alpha \beta$
	$=-2+9$	m1		ft their $\alpha \beta+\beta \gamma+\gamma \alpha$
	$=7$	A1	3	
(ii)	$\alpha \beta \gamma=4$	B1		PI when earning m1 later
	$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$			or $(-2-\alpha)(-2-\beta)(-2-\gamma)$
	$=\sum \alpha \sum \alpha \beta-\alpha \beta \gamma$	M1		$=-8-4 \sum \alpha-2 \sum \alpha \beta-\alpha \beta \gamma$
	$=-6-4$	m1		Sub their $\sum \alpha, \sum \alpha \beta \& \alpha \beta \gamma$
	$=-10$	A1	4	
(c)	Sum of new roots $=2 \sum \alpha=-4$	B1		or NMS coefficient of z^{2} written as +4
	$z^{3} \pm 4 z^{2}+"$ their 7 " $z-$ "their $-10 "(=0)$	M1		correct sub of their results from part (b)
	New equation $z^{3}+4 z^{2}+7 z+10=0$	A1	3	
				Alternative $y=-2-z$ B1 $(-2-y)^{3}+2(-2-y)^{2}+3(-2-y)-4=0$
				$y^{3}+4 y^{2}+7 y+10=0 \quad \text { M1 }$
				NB candidate may do this first and then obtain results for part (b)

Q7	Solution	Mark	Total	Comment
(a)	$\alpha \beta+\beta \gamma+\gamma \alpha=0$	B1		
	$\alpha \beta \gamma=-\frac{4}{27}$	B1	2	
(b)(i)	$\alpha \beta+\alpha \beta+\beta^{2}=0 ; \alpha \beta^{2}=-\frac{4}{27}$	B1		May use γ instead of β throughout (b)(i)
	$\alpha^{3}=-\frac{1}{27} \quad \text { or } \quad \beta^{3}=\frac{8}{27}$	M1 A1		Clear attempt to eliminate either α or β from "their" equations correct
	either $\alpha=-\frac{1}{3}$ or $\beta=\frac{2}{3}$	A1		
	$\alpha=-\frac{1}{3}, \beta=\frac{2}{3}, \gamma=\frac{2}{3}$	A1	5	all 3 roots clearly stated
(ii)	$\left(\sum \alpha=1=-\frac{k}{27} \Rightarrow\right) k=-27$	B1	1	or substituting correct root into equation
(c)(i)	$\alpha^{2}=-2 \mathrm{i}$	B1		
	$\alpha^{3}=-2-2 \mathrm{i}$	B1	2	
(ii)	$27(-2-2 i)-2 i k+4=0$	M1		correctly substituting "their" $\alpha^{2}=-2 \mathrm{i}$ and "their" $\alpha^{3}=-2-2 i$
	$k=-27+25 i$	A1	2	
(d)	$y=\frac{1}{z}+1 \Rightarrow z=\frac{1}{y-1}$	B1		may use any letter instead of y
	$\frac{27}{(v-1)^{3}}-\frac{12}{(v-1)^{2}}+4=0$	M1		sub their z into cubic equation
	$(y-1)^{3} \quad(y-1)^{2}$			removing denominators correctly
	$27-12(y-1)+4(y-1)^{3}=0$	A1		removing denominators correctly
	$27-12 y+12+4\left(y^{3}-3 y^{2}+3 y-1\right)=0$	A1		correct and (y-1) expanded correctly
	$4 y^{3}-12 y^{2}+35=0$	A1	5	
	Alternative: $\sum \alpha^{\prime}=3+\frac{\alpha \beta+\beta \gamma+\gamma \alpha}{\alpha \beta \gamma}=3$	(B1)		sum of new roots $=3$
	$\sum \alpha^{\prime} \beta^{\prime}=3+\frac{2(\alpha \beta+\beta \gamma+\gamma \alpha)+\alpha+\beta+\gamma}{\alpha \beta \gamma}$	(M1)		M1 for either of the other two formulae correct in terms of $\alpha \beta \gamma, \alpha \beta+\beta \gamma+\gamma \alpha$ and
	$=0$	(A1)		$\alpha+\beta+\gamma$
	$\prod=1+\frac{\alpha \rho+\rho \gamma+\gamma \alpha+1+\alpha+\rho+\gamma}{\alpha \beta \gamma}$			
	$=\frac{-35}{4}$	(A1)		
	$4 y^{3}-12 y^{2}+35=0$	(A1)	(5)	may use any letter instead of y

